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Abstract: Continental prediction of soil erosion and sediment transport poses many challenges, one of them
being the difficulty of using coarse-scale topographic data to predict topographic influences on erosion at a
scale commensurate with erosion processes. This paper describes the methods used in the Water-borne Soil
Erosion and Sediment Transport project in the Sustainability Theme of the National Land and Water
Resources Audit completed in early 2001. The RUSLE slope length and slope steepness factors were derived
through a statistical modelling procedure based on a large number of measurements from high resolution
DEMs across Australia. The statistical models provided usable predictions of slope length and steepness
across the large areas of the continent included in the study with substantial improvements over values

derived directly from the continental 9 second DEM.
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1. INTRODUCTION

1.1. Background

The water-borne erosion and sediment transport
project (Project 4a of Theme 5 of the National
Land and Water Resources Audit) provides
predictions of hillslope erosion as one of the
sources of sediment in river systems. The
processes being modelled — routing of overland
flow with detachment and deposition of sediment
— are known to operate at a fine spatial scale,
considerably finer than the resolution of the
9 second DEM [Hutchinson et al., 2001] which
currently is the best Australia-wide digital
elevation data set. This scale mismatch is a well-
known problem and frequently occurs in
hydrological modelling. While there is an
extensive literature describing the problem and
suggesting possible approaches, there is as yet no
accepted operational procedure for dealing with it.

In this project erosion was modelled using the
revised universal soil loss equation (RUSLE)
[Renard et al., 1997] which includes topographic
effects via length (L) and slope (S) factors. The
spatial ‘variation in these two factors combined is
an important control on erosion intensity,
comparable with the range of rainfall and soil
erodibility [Rustomji and Prosser, in prep].
Deriving these factors directly from the 9 second
DEM would be indefensible, as slopes would be
underestimated and hillslope length overestimated
in most areas.
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The approach used for this project was to
calculate slope and hillslope lengths from selected
high resolution DEMs then build statistical
models using predictive variables that are can be
derived everywhere.

This paper follows on from Gallant et al. [1999]
presented at MODSIM 1999, where the issues
were identified and an approach proposed. The
original concept was to use a spatially explicit
sediment transport model at the 9 second DEM
resolution, with topographic structure re-
introduced to that DEM and the effects of sub-
grid-scale structure parameterised in the model.
The adopted solution was less detailed but
provided information at a level of detail consistent
with the continental scale of the project.

2. MEASUREMENTS FROM HIGH
RESOLUTION DEMS

High resolution DEMs were obtained to cover
most of the combinations of landform, climate and
geology in Australia. An initial set of readily
available DEMs was acquired, then gaps in the
coverage were identified and additional DEMs
obtained to fill those gaps. The final set of DEMs
covered areas from all states, and included both
coastal and inland areas. Resolutions were mostly
20 to 50 m and were derived either from 1:25 000
scale source data (1:50000 in some cases) or
from radar altimetry collected during airborne
geophysical surveys. One DEM covering the wet



tropics of northern Queensland is at 80m
resolution and is based on 1:100 000 scale source
data.

Figure 1 shows the location and extent of the high
resolution DEMs used for model building.

Figure 1. Figure 1. Location of high
resolution DEMs used in the project.
Shades indicate the DEM resolutions.

2.1. Hillslope Length

The algorithm used to calculate hillslope length is
based on the classification of DEM cells into one
of four classes: top, bottom, hillslope and
indeterminate. The class is assigned by examining
the set of cells within a circular context of a given
size and marking the cells that are the maximum
and minimum value in the circle. The circular
context is constructed at every grid cell, so each
cell is included within the context a number of
times. Any cell that is never a maximum is classed
as a bottom (valley) cell for that circle size; any
cell that is never a minimum is classed as a top
(ridge) cell; and cells that have been both
maximum and minimum are classed as hillslopes.
Those cells that were neither maximum nor
minimum do not have a clear interpretation,
although they include saddle cells, and are termed
indeterminate cells. This analysis is performed
using a range of different sized circular contexts,
from one pixel in radius up to a user-defined
- maximum (1 km in this application).

The property that makes this classification useful
for determining hillslope length is that most cells
are classified as hillslope points at small radii but
indeterminate at large radii. The radius at which
the number of indeterminate points equals the
number of hillslope points is a measure of the
hillslope length. This radius cannot be determined
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for individual cells, since it is the frequency of
different classes amongst a group of cells that
determines the hillslope length at a site. The
method therefore requires a user-defined length
scale over which the frequency of cell classes is
determined (1 km in this case). The resolution of
the output grid is also user-specifiable (250 m in
this case) but is rounded to the nearest multiple of
the DEM resolution. This algorithm is
implemented in the program HillLength?2,
available from the author.

Following calculation of the hillslope length at
250 m intervals, a mean length over a 1.5 km
radius is computed. This step was performed to
smooth out fine-scale variations in hillslope length
that could not realistically be predicted from the
coarser scale predictive variables. A further
processing step was required to exclude areas with
low relief, as hillslope length in very flat
landscapes is unreliable both conceptually (what
is a hillslope when there are no hills?) and
practically (noise or subtle variations in DEM
produce small hillslope length values). Low relief
areas for this purpose were defined as areas
having a standard deviation of elevation over a
2 km radius that was less than 5 m. A recently
developed method for identifying depositional
areas [Gallant and Dowling, in prep] provides a
means for identifying length scales in these low
relief parts of the landscape, but has not been
incorporated in this analysis.

Figure 2 shows measured hillslope length (after
smoothing) for the Warragul 1:250 000 map sheet
in south-eastern Victoria including Wilson’s
Promontory (145°30°E to 147°E, 39°15’S to
38° S, approximately 130 x 130 km). Hillslope
lengths in this landscape range from 60 to 400 m;
in some other landscapes hillslope lengths up to
1 km are obtained.

2.2. Slope

Slope was calculated from the high resolution
DEMs using conventional methods (the SLOPE
function in ArcInfo Grid, with the percent option).
For DEM:s in geographic coordinates, corrections
were applied to account for the different units of
measure in the horizontal direction (degrees) and
vertical direction (metres) and for the difference
in spacing in the x and y directions due to the
spherical coordinate system [Gallant, 2001]. From
the raw slope, a mean slope over a circle of 250 m
radius was calculated and the results converted to
geographic projection at 9 second resolution.

Figure 3 shows mean slope calculated for the
Warragul map sheet. Mean slope ranges from 0 to




50 % in this area which is the typical range for the
steepest areas of Australia.

3. MODELLING METHOD=-

The statistical models were constructed using the
Cubist data mining tool [version 1.08; Rulequest
Research, 2001]. This software takes a set of
samples, each with a target value and a collection
of potential predictive variables, and constructs a
number of rules each comprising a set of
conditions and a linear model that provides the
predicted value when the conditions are met.
Cubist can also use an independent set of samples

to test the model, and reports both summary

statistics and the predictions for each validation
datum. For this application 30% of the points in
the 9 second resolution data were used for model
building and a further 10% of points for model
testing. The resulting sample set combined from
all the high resolution results contained
approximately 200 000 sample points, each with a
calculated value and the values of all predictive
variables at that location.

The predictive variables were selected to
represent the major factors presumed to control
landscape form:

e  Material (geology and soil)

e Climate rainfall and

seasonality)

(temperature,

e  Geomorphology (relief, slope, slope position)
Sixteen variables were used for prediction:

e Two aggregated geology classifications
derived from the 1:2.5M scale geology map
of Australia (geol_agec and geol_lith)

e A more detailed lithology surface provided
by the Bureau of Rural Sciences (lithology)

e The Australian Soil Classification derived
from the Atlas of Australian Soils

e Mean annual rainfall, rainfall seascnality
index and annual moisture index

e Mean annual temperature, temperature
seasonality and diurnal temperature range

e Relief, relative elevation and slope position
within land units defined by ridge and stream
networks from the 9 second DEM

o Standard deviation of elevation and elevation
percentile (an indicator of slope position)
within 2 km radius circular regions from the
9 second DEM

e Slope from the 9 second DEM

A stepwise model building approach was adopted.
For the first step, each variable was used
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independently and the best variable identified
using statistical diagnostics from the modelling
package (correlation and relative error). This one
variable was then used with each other variable,
and the best second variable identified. This
procedure was repeated until all variables were
included.

As more variables were introduced into the model
and the rule conditions derived by Cubist became
more selective, the number of points that do not
match any condition increased, leaving undefined
cells in the predicted result. This is an undesirable
effect that influenced the selection of model
complexity.

Final selection of the model was based on the
statistical diagnostics, visual comparisons of
predicted and measured maps and the relative
rates of unpredicted points.

3.1. Model of Hillslope Length

Models for hillslope length with few variables
performed poorly, and the performance continued
to improve slowly as more variables were
included. There were few problems with
unpredicted values, so the ‘selected model
included all the 16 variables and contained 56
rules.

Lithology was the most predictive single variable
(correlation = 0.35), with three climate variables
(mean annual temperature, diurnal temperature
range and mean annual rainfall) producing slightly
lower correlations. The order in which variables
were selected is:

lithology

mean annual temperature
temperature seasonality
standard deviation of elevation
mean annual rainfall

diurnal temperature range
slope position

rainfall seasonality
elevation percentile

annual moisture index
Australian soil classification
slope from 9” DEM

relief

relative elevation

geology (geol_lith)

geology (geol_agec)

The final model comprised 55 rules and has a
correlation coefficient of 0.71 on the validation
data.



Figure 2. Measured hillslope length for
Warragul map sheet, southeastern Victoria.
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Figure 3. Measured slope for Warragul
sheet.

The importance of lithology in this model is not
surprising, but the degree to which climatic
variables explain hillslope length is surprising.
Climatic variables make up 5 of the 8 most
predictive variables. Standard deviation of
elevation, essentially a measure of relief, is the
only geomorphic variable appearing bigh on the
list. Mean annual temperature, the second variable
included, could be acting as a surrogate for
. elevation above a base level since temperature
decreases  systematically with  elevation.
Temperature seasonality, the third variable
included, may be a direct measure of climatic
regime distinguishing alpine, arid and coastal
environments.

Figure 4 shows the predicted hillslope length for
the Warragul map sheet. Compared with the
measured values of Figure 2, the predicted map
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Figure 4. Predicted hillslope length for
Warragul sheet. Compared to measured
values, the predictions have reduced range
and detail but similar patterns.
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Figure 5. Predicted slope for Warragul
sheet. Compared to the measured values,
general patterns and values are similar
although much detail is lost.

shows similar overall patterns with differences in
detail, and a reduced range: both short and long
hillslopes are under-represented in the predictions.
The variation between shorter and longer
hillslopes at the regional scale is the desired
result, and this prediction is considered to be a
satisfactory result for the.purposes of this project.

3.2. Model of Slope

While slope from the 9second DEM was
considered unreliable compared to slope from the
higher resolution DEMs, it was expected to be
well correlated with mean slope. This was indeed
the case, and slope was by far the best single
predictor, but additional variables improved the
result both in terms of statistics and spatial
patterns (as assessed by the visual comparison of
the predictions and measurements). The results




ceased to improve after 10 variables, and the
frequency of unpredicted values increased with
increasing - numbers of variables, so the final
model used only the first 10 variables:

slope from 9” DEM

standard deviation of elevation
lithology

rainfall seasonality

annual moisture index

annual mean temperature
elevation percentile

relative elevation

diurnal temperature range
slope position

This model comprised 53 rules and had a
correlation coefficient of 0.87.

The list of included variables contains a mixture
of geomorphic, geologic and climatic variables.
As expected, slope is the most predictive single
variable. The early inclusion of standard deviation
of elevation and lithology is unsurprising. What is
surprising is the lack of predictive power from
annual mean rainfall; instead rainfall seasonality
and moisture index appear as relatively important
predictors. It may be that the effect of mean
annual rainfall is already captured by the 9” slope,
with the seasonality and moisture index
accounting for subtler effects of rainfall-related
climate.

An additional model using just 9” slope as the
sole predictive variable was developed for use in
the interior of the continent where many of the
predictive variables were not available and the
extrapolation of the model is not appropriate. This
model contained 17 rules (correlation = 0.80), and
the composite effect of those linear models was
manually modelled with a single non-linear
model:

2.1
1+ 014 s,
1+0.001s,

S pred =1+s,

where s,,,.q is predicted slope and sy is slope from
the 9”7 DEM. This model predicts a minimum
slope of 1%, increasing with 9” slope at a rate that
decreases as 9” slope increases.

Figure 5 shows predicted slope for the Warragul
map sheet. As for hillslope length, the predictions
are similar in overall pattern with considerable
differences in detail. The predicted slope has
fewer areas of high slope and less detail, but for
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the purposes of this project the prediction is once
again considered to be satisfactory.

3.3. Calculation of L and S Factors

The RUSLE L and S factors are calculated from
mean hillslope length and mean slope using the
standard RUSLE equations [Renard et al., 1997].
In some land use classes where surface runoff
does not appear to increase with flow path length,
the L factor is set to 1.

Some applications of hillslope length for erosion
prediction require an L factor for the interior of
the continent. In this non-agricultural area no high
resolution DEMs were obtained to provide
samples for rule building. Extrapolation of the
rules into the different geomorphic and climatic
conditions of this area was considered to be
inappropriate, so a unit L factor value was used.
For low relief areas this is reasonable as the L
factor is close to 1 when slope is low. High relief
areas would in reality have a higher L factor.

Further details of these calculations are presented
in Lu et al. [2001].

4. ASSESSMENT OF RESULTS

The hillslope length algorithm has not been
thoroughly validated although manual
measurements from contours in a small number of
locations agreed with the results of
HillLength2. The error from calculating
hillslope length is considered to be small. The
error in calculating mean slope is also expected to
be small.

The accuracy of the predictions is assessed both
by the statistical diagnostics of the Cubist
program and visual comparisons of patterns. The
correlations reported by Cubist are 0.71 for
hillslope length, which indicates a reasonably
good prediction but with substantial variation
unaccounted for, and 0.87 for slope indicating
quite a good model accounting for most of the
variation.

Root—mean—sqﬁare (RMS) error for each
prediction was analysed using the approximately
67 000 pairs of measured and predicted values.
For hillslope length the RMS error was 85 m,
compared to a mean hillslope length of about
200m. Error generally increases with the
magnitude of the predicted hillslope length, and
the mean relative error is about 30% for predicted
lengths between 100 and 500 m. The model
performs poorly for low hillslope lengths; for
predicted lengths less than 70 m, the average error
is over 100 m. It also under-predicts large



hillslope lengths: there are few predictions greater
than 400m in spite of the measured values
reaching 1000 m.

For slope the RMS error was 7% slope, compared
to a mean slope of 13%. Error generally increases
with slope value, with under-prediction
increasingly prevalent at higher slopes. The mean
relative error is about 0.6 for slopes less than 5%
decreasing to 0.1 for slopes above 60%. The error
is approximately 0.4 times the slope value up to
20% slope, above which the error is 8% slope.
The minimum predicted slope is about 0.5%, so
very low slopes are not correctly represented.

5. CONCLUSIONS

Overall, the results are considered adequate for
the purpose of this project. The errors form a
significant but not overwhelming contribution to
the error budget for hillslope soil erosion.

The value in this modelling approach based on
high resolution data is demonstrated by two
observations. Firstly, the average hillslope length
(200 m) is less than the resolution of the 9 second
DEM. Secondly, the model of slope based solely
on the 9 second DEM slope demonstrates that the
mean slope is more than twice the value measured
directly from the 9 second DEM, although this
factor reduces as slope increases above 10%.
Determining hillslope lengths and slopes directly
from the 9 second DEM would have caused gross
errors in erosion estimates.

The rules produced by Cubist have not yet been
analysed from a geomorphic perspective. It is
possible that some of the variables are acting as
surrogates for other effects, in which case more
physically realistic models could be constructed
by using a predictive variable more closely related
to the effect. One example of this could be
temperature, which is a strong predictor of
hillslope length but may be reflecting some effect
of elevation on hillslope length, rather than
temperature per se. A close analysis of the rules
may suggest areas for research into the physical
processes underlying the development of slope
forms, but this has not yet been attempted.
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